TSTP Solution File: SEV412^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV412^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n118.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:34:10 EDT 2014

% Result   : Theorem 0.41s
% Output   : Proof 0.41s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV412^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n118.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:10:16 CDT 2014
% % CPUTime  : 0.41 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1805c68>, <kernel.Sort object at 0x18b6b48>) of role type named cG
% Using role type
% Declaring cG:Prop
% FOF formula (<kernel.Constant object at 0x1805440>, <kernel.DependentProduct object at 0x1a5d4d0>) of role type named cB
% Using role type
% Declaring cB:(fofType->Prop)
% FOF formula (<kernel.Constant object at 0x1a5b5a8>, <kernel.DependentProduct object at 0x1a5d488>) of role type named cA
% Using role type
% Declaring cA:(fofType->Prop)
% FOF formula (((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))->((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) of role conjecture named cDUAL_EG2_pme
% Conjecture to prove = (((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))->((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))->((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))']
% Parameter cG:Prop.
% Parameter fofType:Type.
% Parameter cB:(fofType->Prop).
% Parameter cA:(fofType->Prop).
% Trying to prove (((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))->((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))
% Found x10:=(x1 x0):cG
% Found (x1 x0) as proof of cG
% Found (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)) as proof of cG
% Found (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)) as proof of (((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->cG)
% Found x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx)))
% Found x0 as proof of (forall (Xx:fofType), ((cA Xx)->(cB Xx)))
% Found (x1 x0) as proof of cG
% Found (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)) as proof of cG
% Found (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)) as proof of (((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->cG)
% Found ((or_ind00 (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) as proof of cG
% Found (((or_ind0 cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) as proof of cG
% Found ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) as proof of cG
% Found (fun (x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx))))=> ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)))) as proof of cG
% Found (fun (x:((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))) (x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx))))=> ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)))) as proof of ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)
% Found (fun (x:((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))) (x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx))))=> ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0)))) as proof of (((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))->((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))
% Got proof (fun (x:((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))) (x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx))))=> ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))))
% Time elapsed = 0.089689s
% node=14 cost=91.000000 depth=9
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:((or ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))) (x0:(forall (Xx:fofType), ((cA Xx)->(cB Xx))))=> ((((fun (P:Prop) (x1:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P)) (x2:(((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)->P))=> ((((((or_ind ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) ((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG)) P) x1) x2) x)) cG) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))) (fun (x1:((forall (Xx:fofType), ((cA Xx)->(cB Xx)))->cG))=> (x1 x0))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------